eSpeaks’ Corey Noles talks with Rob Israch, President of Tipalti, about what it means to lead with Global-First Finance and how companies can build scalable, compliant operations in an increasingly ...
"Logistic and Poisson Regression," Wednesday, November 5: The fourth LISA mini course focuses on appropriate model building for categorical response data, specifically binary and count data. The most ...
Microsoft Research's Dr. James McCaffrey show how to perform binary classification with logistic regression using the Microsoft ML.NET code library. The goal of binary classification is to predict a ...
Dr. James McCaffrey of Microsoft Research demonstrates applying the L-BFGS optimization algorithm to the ML logistic regression technique for binary classification -- predicting one of two possible ...
In epidemiological studies, continuous covariates often are measured with error and categorical covariates often are misclassified. Using the logistic regression ...
Logistic Regression is a widely used model in Machine Learning. It is used in binary classification, where output variable can only take binary values. Some real world examples where Logistic ...
Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort ...
We consider estimation of mixed-effects logistic regression models for longitudinal data when missing outcomes are not missing at random. A typology of missingness mechanisms is presented that ...
In recent columns we showed how linear regression can be used to predict a continuous dependent variable given other independent variables 1,2. When the dependent variable is categorical, a common ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results